Ch 6 - Sec 4 - Pro 3
 Parts a, b
 Page 1 / 2

For the equation

$$
z^{\prime \prime}+4 z^{\prime}+3 z=130 e^{2 i t}
$$

Show that the trial solution $z=A e^{2 i t}$ leads to $(-1+8 i) A=130$. Solve for A and thus obtain

$$
z=(-2-16 i)(\cos 2 t+i \sin 2 t)
$$

Solution:

$$
\begin{aligned}
& \text { Since } \begin{array}{r}
z^{\prime \prime}+4 z^{\prime}+3 z=130 e^{2 i t} \text { and }\left[\begin{array}{l}
z=A e^{2 i t} \\
z^{\prime}=2 i A e^{2 i t} \\
z^{\prime \prime}=4 i^{2} A e^{2 i t} \\
=-4 A e^{2 i t}
\end{array}\right] \\
\left.\begin{array}{r}
z^{\prime \prime}+4 z^{\prime}+3 z=130 e^{2 i t} \\
-4 A e^{2 i t}+8 i A e^{2 i t}+3 A e^{2 i t}=130 e^{2 i t} \\
-4 A+3 A+8 i A=130
\end{array}\right] \\
{\left[\begin{array}{r}
(-1+8 i) A=130
\end{array}\right]} \\
A=\frac{130}{(-1+8 i)} \cdot \frac{(-1-8 i)}{(-1-8 i)}=\frac{130(-1-8 i)}{1+8 i-8 i-64 i^{2}} \\
{\left[\begin{array}{l}
A=\frac{130(-1-8 i)}{65}=2(-1-8 i)=-2-16 i
\end{array}\right]}
\end{array}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& z=A e^{2 i t}=(-2-16 i) e^{2 i t} \\
& z=(-2-16 i)[\cos 2 t+i \sin 2 t]
\end{aligned}
$$

(B)

Using the result in (A) obtain particular solutions of

$$
\begin{aligned}
& x^{\prime \prime}+4 x^{\prime}+3 x=130 \cos 2 t \\
& y^{\prime \prime}+4 y^{\prime}+3 y=130 \sin 2 t
\end{aligned}
$$

Solution:
Since $\left[\begin{array}{ll}\cos 2 t=\operatorname{Re} e^{2 i t} & \rightarrow x \\ \sin 2 t=\operatorname{Im} e^{2 i t} & \rightarrow y\end{array}\right]$
let's solve instead,

$$
z^{\prime \prime}+4 z^{\prime}+3 z=130 e^{2 i t}
$$

Where

$$
\begin{aligned}
z & =(-2-16 i)(\cos 2 t+i \sin 2 t) \\
& =-2 \cos 2 t-2 i \sin 2 t-16 i \cos 2 t-16 i^{2} \sin 2 t \\
& =-2 \cos 2 t-(2 \sin 2 t+16 \cos 2 t) i+16 \sin 2 t \\
z= & -2 \cos 2 t+16 \sin 2 t-(2 \sin 2 t+16 \cos 2 t) i \\
\therefore & {\left[\begin{array}{l}
x(t)=-2 \cos 2 t+16 \sin 2 t \\
\\
y(t)=-2 \sin 2 t-16 \cos 2 t
\end{array}\right] }
\end{aligned}
$$

Ch 6-Sec 4-Pro 4

By use of an equivalent complex equation or by a trial solution of the form $A \sin (s t)+B \cos (s t)$, as you prefer, obtain particular solutions of:

$$
\begin{aligned}
& x^{\prime \prime}-3 x^{\prime}+2 x=20 \cos 2 t \\
& y^{\prime \prime}-3 y^{\prime}+2 y=20 \sin 2 t
\end{aligned}
$$

(A)

Solution:
Since $\left[\begin{array}{l}\cos 2 t=\operatorname{Re} e^{2 i t} \rightarrow x \\ \sin 2 t=\operatorname{Im} e^{2 i t} \rightarrow y\end{array}\right]$
So consider instead

$$
\begin{aligned}
& \text { Since } z^{\prime \prime}-3 z^{\prime}+2 z=20 e^{2 i t} \text { and }\left[\begin{array}{l}
z=A e^{2 i t} \quad \text { trial Solution } \\
z^{\prime}=2 i A e^{2 i t} \\
z^{\prime \prime}=4 i^{2} A e^{2 i t} \\
=-4 A e^{2 i t}
\end{array}\right] \\
& \therefore \quad z^{\prime \prime}-3 z^{\prime}+2 z=20 e^{2 i t} \\
& -4 A e^{2 i t}-6 i A e^{2 i t}+2 A e^{2 i t}=20 e^{2 i t} \\
& -2 A-3 i A+A=-A-3 i A=10 \\
& {[(-1-3 i) A=10]} \\
& A=\frac{10}{(-1-3 i)} \cdot \frac{(-1+3 i)}{(-1+3 i)}=\frac{10(-1+3 i)}{1-3 i+3 i-9 i^{2}} \\
& {\left[A=\frac{10(-1+3 i)}{10}=-1+3 i\right]} \\
& z=A e^{2 i t}=(-1+3 i) e^{2 i t} \\
& =(-1+3 i)(\cos 2 t+i \sin 2 t) \\
& =-\cos 2 t-i \sin 2 t+3 i \cos 2 t+3 i^{2} \sin 2 t \\
& z=-\cos 2 t-3 \sin 2 t+(-\sin 2 t+3 \cos 2 t) i
\end{aligned}
$$

Thus,

$$
\left[\begin{array}{l}
x_{p}=-\cos 2 t-3 \sin 2 t \tag{21}\\
y_{p}=-\sin 2 t+3 \cos 2 t
\end{array}\right]
$$

(B)

Now try this one:

$$
\begin{aligned}
& x^{\prime \prime}+x^{\prime}+17 x=17 \cos 4 t \\
& y^{\prime \prime}+y^{\prime}+17 y=17 \sin 4 t
\end{aligned}
$$

Solution:
Since $\left[\begin{array}{l}\cos 4 t=\operatorname{Re} e^{4 i t} \\ \sin 4 t=\operatorname{Im} e^{4 i t}\end{array}\right]$
So consider instead

$$
\begin{aligned}
& \text { Since } z^{\prime \prime}+z^{\prime}+17 z=17 e^{4 i t} \text { and }\left[\begin{array}{l}
z=A e^{4 i t} \quad \text { trial Solution } \\
z^{\prime}=4 i A e^{4 i t} \\
z^{\prime \prime}=16 i^{2} A e^{4 i t} \\
=-16 A e^{4 i t}
\end{array}\right] \\
& \therefore \quad z^{\prime \prime}+z^{\prime}+17 z=17 e^{4 i t} \\
& -16 A e^{2 i t}+4 i A e^{2 i t}+17 A e^{2 i t}=17 e^{4 i t} \\
& -16 A+4 i A+17 A=A+4 i A=17 \\
& {[(1+4 i) A=17]} \\
& A=\frac{17}{(1+4 i)} \cdot \frac{(1-4 i)}{(1-4 i)}=\frac{17(1-4 i)}{1-4 i+4 i-16 i^{2}} \\
& {\left[A=\frac{17(1-4 i)}{17}=1-4 i\right]}
\end{aligned}
$$

So,

$$
\begin{aligned}
& z=A e^{4 i t}=(1-4 i) e^{4 i t}=(1-4 i)[\cos 4 t+i \sin 4 t] \\
& \quad=\cos 4 t+i \sin 4 t-4 i \cos 4 t-4 i^{2} \sin 4 t \\
& z=\cos 4 t+4 \sin 4 t+(\sin 4 t-4 \cos 4 t) i \\
& \therefore \\
& {\left[\begin{array}{c}
x_{p}=\cos 4 t+4 \sin 4 t \\
y_{p}=\sin 4 t-4 \cos 4 t
\end{array}\right]}
\end{aligned}
$$

Ch 6-Sec 4 - Pro 5

Parts a, b

Meth $1 / 2$
Page 1 / 7

Obtain a particular solution of:

$$
\begin{aligned}
& x^{\prime \prime}+2 x^{\prime}+5 x=20 e^{t} \cos 2 t \\
& y^{\prime \prime}+2 y^{\prime}+5 y=20 e^{t} \sin 2 t
\end{aligned}
$$

Solution:

Since $\cos (2 t)$ and $\sin (2 t)$ are the \mathbb{R} eal and Imaginary parts of $e^{2 i t}$ and

$$
\cos 2 t=\operatorname{Re} e^{2 i t} \quad \text { and } \quad \sin 2 t=\operatorname{Im} e^{2 i t}
$$

let's consider instead

$$
z^{\prime \prime}+2 z^{\prime}+5 z=20 e^{t} e^{2 i t}=20 e^{2 i t+t}=20 e^{(1+2 i) t}
$$

A trial solution of the form

$$
\begin{aligned}
& z=A e^{(1+2 i) t} \quad ; \quad z^{\prime}=(1+2 i) A e^{(1+2 i) t} \\
& z^{\prime \prime}=(1+2 i)^{2} A e^{(1+2 i) t}=(1+2 i)(1+2 i) A e^{(1+2 i) t} \\
& z^{\prime \prime}=\left[1+2 i+2 i+4 i^{2}\right] A e^{(1+2 i) t}=(-3+4 i) A e^{(1+2 i) t}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad z^{\prime \prime}+2 z^{\prime}+5 z=20 e^{(1+2 i) t} \\
& (-3+4 i) A e^{(1+2 i) t}+2(1+2 i) A e^{(1+2 i) t}+5 A e^{(1+2 i) t}= \\
& A(-3+4 i+2+4 i+5)=20 \\
& A(4+8 i)=20 \\
& A(1+2 i)=5 \\
& A=\frac{5}{(1+2 i)} \cdot \frac{(1-2 i)}{(1-2 i)}=\frac{(1-2 i)}{1-2 i+2 i-4 i^{2}} \\
& {\left[\begin{array}{c}
A=\frac{5(1-2 i)}{5}=(1-2 i)
\end{array}\right.} \\
& z=(1-2 i) e^{(1+2 i) t}=(1-2 i) e^{t} e^{2 i t} \\
& z=(1-2 i) e^{t}(\cos 2 t+i \sin 2 t)
\end{aligned}
$$

Thus

$$
\begin{aligned}
z & =e^{t}\left[\cos 2 t+i \sin 2 t-2 i \cos 2 t-2 i^{2} \sin 2 t\right] \\
& =e^{t}[\cos 2 t+2 \sin 2 t+(\sin 2 t-2 \cos 2 t) i]
\end{aligned}
$$

$$
\therefore
$$

$$
\left[\begin{array}{l}
x=\operatorname{Re} z=e^{t}[\cos 2 t+2 \sin 2 t] \tag{31}\\
y=\operatorname{Im} z=e^{t}(\sin 2 t-2 \cos 2 t)
\end{array}\right]
$$

Method 2.
We can also solve each equation separately $20 e^{t} \sin 2 t=y^{\prime \prime}+2 y^{\prime}+5 y$

$$
=\left(D^{2}+2 D+5\right) y
$$

Let $y=u e^{t}$
$20 e^{t} \sin 2 t=\left(D^{2}+2 D+5\right) y$

$$
\begin{aligned}
20 e^{t} \sin 2 t & =\left(D^{2}+2 D+5\right) u e^{t} \\
& =e^{t}\left((D+1)^{2}+2(D+1)+5\right) u \\
& =e^{t}\left(D^{2}+2 D+1+2 D+2+5\right) u \\
& =e^{t}\left(D^{2}+4 D+8\right) u \\
20 \sin 2 t & =\left(D^{2}+4 D+8\right) u \\
\left(D^{2}+4 D\right. & +8) u=20 \sin 2 t
\end{aligned}
$$

Here is where we can use a complex or a non-complex implant $e^{i t}$ or $A \cos b t+B \sin b t$ respectively.
Let $u=A \cos 2 t+B \sin 2 t \quad$ @ $b=2$
$u^{\prime}=-2 A \sin 2 t+2 B \cos 2 t$
$u^{\prime \prime}=-4 A \cos 2 t-4 B \sin 2 t$
\therefore
$20 \sin 2 t=\left(D^{2}+4 D+8\right) u$

$$
=-4 A \cos 2 t-4 B \sin 2 t-8 A \sin 2 t+
$$

$$
\begin{equation*}
+8 B \cos 2 t+8 A \cos 2 t+8 B \sin 2 t \tag{60}
\end{equation*}
$$

$20 \sin 2 t=(4 A+8 B) \cos 2 t+(4 B-8 A) \sin 2 t$
Where $\left[\begin{array}{r}4 A+8 B=0 \\ A+2 B=0 \\ A=-2 B\end{array}\right]$ and $\left[\begin{array}{c}8 B-8 A=20 \\ B-2 A=5 \\ B-2(-2 B)=B+4 B=5\end{array}\right]$
So $\quad B=1 \cup A=-2 B=-2$
$\therefore \quad u=-2 \cos 2 t+\sin 2 t$
$y=u e^{t}=e^{t}[-2 \cos 2 t+\sin 2 t]$
The same as in (31).

To find $\boldsymbol{x}(\boldsymbol{t})$ set equation $(60)=20 \boldsymbol{\operatorname { c o s }}(2 \boldsymbol{t})$.

$$
\begin{aligned}
& 20 \cos 2 t=(4 A+8 B) \cos 2 t+(4 B-8 A) \sin 2 t \\
& \text { Where }\left[\begin{array}{c}
4 B-8 A=0 \\
B-2 A=0 \\
B=2 A
\end{array}\right] \text { and }\left[\begin{array}{c}
4 A+8 B=20 \\
A+2 B=5 \\
A+4 A=5
\end{array}\right] \\
& A=1 \cup B=2 \\
& \therefore \quad u=A \cos 2 t+B \sin 2 t \\
& \therefore u=\cos 2 t+2 \sin 2 t \\
& \qquad \begin{array}{r}
4(t)=u e^{t}=e^{t}(\cos 2 t+2 \sin 2 t) \\
\text { Same answer as in equation }(30)
\end{array}
\end{aligned}
$$

(B)

Obtain a particular solution of:

$$
\begin{aligned}
& x^{\prime \prime}-x^{\prime}-6 x=102 e^{3 t} \cos 3 t \\
& y^{\prime \prime}-y^{\prime}-6 x=102 e^{3 t} \sin 3 t
\end{aligned}
$$

Solution: Method 1

Since $\cos (3 t)$ and $\sin (3 t)$ are the $\mathbb{R e}$ eal and Imaginary parts of $e^{3 i t}$ and

$$
\cos 3 t=\operatorname{Re} e^{3 i t} \quad \text { and } \quad \sin 3 t=\operatorname{Im} e^{3 i t}
$$

let's consider instead

$$
z^{\prime \prime}-z^{\prime}-6 z=102 e^{3 t} e^{3 i t}=102 e^{3 i t+3 t}=102 e^{(3+3 i) t}
$$

A trial solution of the form

$$
\begin{aligned}
& z=A e^{(3+3 i) t} ; \quad z^{\prime}=(3+3 i) A e^{(3+3 i) t} \\
& z^{\prime \prime}=(3+3 i)^{2} A e^{(3+3 i) t}=(3+3 i)(3+3 i) A e^{(3+3 i) t} \\
& z^{\prime \prime}=\left[9+18 i+9 i^{2}\right] A e^{(3+3 i) t}=18 i A e^{(3+3 i) t}
\end{aligned}
$$

Ch 6 -Sec 4-Pro 5

$$
\left.\begin{array}{l}
\therefore \begin{array}{r}
z^{\prime \prime}-z^{\prime}-6 z=102 e^{(3+3 i) t} \\
18 i A e^{(3+3 i) t}-(3+3 i) A e^{(3+3 i) t}-6 A e^{(3+3 i) t}= \\
A(18 i-3 i-3 i-6)=102
\end{array} \\
A(-9+15 i)=102 \\
3 A(-3+5 i)=102
\end{array}\right] \begin{array}{r}
A=\frac{34}{(-3+5 i)} \cdot \frac{(-3-5 i)}{(-3-5 i)}=\frac{34(-3-5 i)}{9+15 i-15 i-25 i^{2}} \\
{\left[\begin{array}{r}
A=\frac{34(-3-5 i)}{9+25}=\frac{34(-3-5 i)}{34}=-3-5 i
\end{array}\right]} \\
z=A e^{(3+3 i) t}=(-3-5 i) e^{(3+3 i) t}=(-3-5 i) e^{3 t} e^{3 i t} \\
z=(-3-5 i) e^{3 t}(\cos 3 t+i \sin 3 t)
\end{array}
$$

Thus

$$
\begin{align*}
z & =e^{3 t}\left[-3 \cos 3 t-3 i \sin 3 t-5 i \cos 3 t-5 i^{2} \sin 2 t\right] \\
& =e^{t}[-3 \cos 3 t+5 \sin 3 t+(-3 \sin 3 t-5 \cos 3 t) i \tag{102}
\end{align*}
$$

\therefore

$$
\left[\begin{array}{l}
x=\operatorname{Re} z=e^{t}[-3 \cos 3 t+5 \sin 3 t] \tag{104}\\
y=\operatorname{Im} z=e^{t}(-3 \sin 3 t-5 \cos 3 t)
\end{array}\right]
$$

Method 2.

We can also solve each equation separately
$102 e^{3 t} \sin 3 t=y^{\prime \prime}-y^{\prime}-6 y$

$$
=\left(D^{2}-D-6\right) y
$$

Let $y=u e^{3 t}$ and use the slide THM.
$102 e^{3 t} \sin 3 t=\left(D^{2}-D-6\right) y$

$$
\begin{aligned}
102 e^{3 t} \sin 3 t & =\left(D^{2}-D-6\right) u e^{3 t} \\
= & e^{3 t}\left((D+3)^{2}-(D+3)-6\right) u \\
& =e^{3 t}\left(D^{2}+6 D+9-D-3-6\right) u \\
& =e^{3 t}\left(D^{2}+6 D-D\right) u \\
102 \sin 3 t & =\left(D^{2}+5 D\right) u \\
\left(D^{2}+5 D\right) u & =102 \sin 3 t
\end{aligned}
$$

Here is where we can use a complex or a non-complex implant or. $A \cos b t+B \sin b t$ respectively.

Let $\quad u=A \cos 3 t+B \sin 3 t \quad @ b=3$

$$
\begin{aligned}
& u^{\prime}=-3 A \sin 3 t+3 B \cos 3 t \\
& u^{\prime \prime}=-9 A \cos 3 t-9 B \sin 3 t
\end{aligned}
$$

$$
\therefore
$$

$$
102 \sin 3 t=\left(D^{2}+5 D\right) u
$$

$$
=-9 A \cos 3 t-9 B \sin 3 t-15 A \sin 3 t+15 B \cos 3 t
$$

$$
\begin{equation*}
102 \sin 3 t=(-9 A+15 B) \cos 3 t+(-9 B-15 A) \sin 3 t \tag{118}
\end{equation*}
$$

Where $\left[\begin{array}{rl}-9 A+15 B=0 \\ 9 A=15 B \\ A=\frac{15}{9} B=\frac{5}{3} B\end{array}\right]$ and $\left[\begin{array}{rl}-9 B-15 A & =102 \\ -9 B-(15) \frac{5}{2} B & = \\ -9 B-25 B & =-34 B=102 \\ B=\frac{-102}{34} & =-3\end{array}\right]$

Therefore, $\quad B=-3$ and $A=(5 / 3) B=-5$
$\therefore \quad u=-5 \cos 3 t-3 \sin 3 t$
$y=u e^{3 t}=e^{t}[-5 \cos 3 t-3 \sin 3 t]$
$y=e^{3 t}[-3 \sin 3 t-5 \cos 3 t]$
The same as in (104).
To find $\boldsymbol{x}(\boldsymbol{t})$ set equation(118) $=\mathbf{1 0 2} \boldsymbol{\operatorname { c o s } (3 t)}$. And,
$102 \cos 3 t=(-9 A+15 B) \cos 3 t+(-9 B-15 A) \sin 3 t$
Where $\left[\begin{array}{r}-9 B-15 A=0 \\ 15 A=-9 B \\ A=\frac{-9}{15} B=\frac{-3}{5} B\end{array}\right]$ and $\left[\begin{array}{c}-9 A+15 B=102 \\ -9 A+(15) \frac{-5}{3} A=102 \\ -9 A-25 A=102 \\ -34 A=102 \\ A=\frac{-102}{34}=-3\end{array}\right]$

$$
\begin{aligned}
& A=-3 \cup B=\frac{-5}{3} A=5 \\
& \therefore \quad u=A \cos 3 t+B \sin 3 t \\
& \quad u=-3 \cos 3 t+5 \sin 3 t \\
& x(t)=u e^{3 t}=e^{3 t}(-3 \cos 3 t+5 \sin 3 t)
\end{aligned}
$$

Same answer as in equation (104)

Ch 6-Sec 4-Pro 6
 Parts a, b
 Page 1 / 3

$$
\begin{equation*}
\text { Solve } \quad z^{\prime}=e^{(a+i b) t} \tag{1}
\end{equation*}
$$

Separate into $\mathbb{R e a l}$ and Imaginary parts, obtain formula (2) below,

$$
\begin{equation*}
\int e^{a t} \cos (b t) d t=e^{a t}\left[\frac{a \cos b t+b \sin b t}{a^{2}+b^{2}}\right]+c \tag{2}
\end{equation*}
$$

and then solve formula (3),

$$
\begin{equation*}
\int e^{a t} \sin (b t) d t \tag{3}
\end{equation*}
$$

(A)

Solution:

$$
\begin{aligned}
& z^{\prime}=e^{(a+i b) t}=e^{a t} e^{i b t}=e^{a t}[\cos b t+i \sin b t] \\
& \operatorname{Re} z^{\prime}=e^{a t} \cos b t \quad \cup \quad \operatorname{Im} z^{\prime}=e^{a t} \sin b t \\
& \therefore \quad \operatorname{Re} z^{\prime}=\operatorname{Re} \frac{d z}{d t}=e^{a t} \cos b t \\
& \operatorname{Re} z=\int \operatorname{Re} z^{\prime} d z=\int e^{a t} \cos b t d t \\
& \text { Let } \\
& \int e^{a t} \cos b t d t=\int u d v=u v-\int v d u \\
& \text { If } \quad\left[\begin{array}{l}
u=e^{a t} \\
d u=a e^{a t} d t
\end{array}\right] \text { and } \quad\left[\begin{array}{l}
d v=\cos (b t) d t \\
v=\int d v \\
v=\int(\cos b t) d t=\frac{1}{b} \sin b t
\end{array}\right]
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \begin{aligned}
\int e^{a t}(\cos b t) d t & =u v-\int v d u \\
& =\frac{e^{a t}}{b} \sin b t-\int \frac{a}{b} e^{a t} \sin (b t) d t \\
& =\frac{e^{a t}}{b} \sin b t-\frac{a}{b} \int e^{a t} \sin (b t) d t
\end{aligned} \\
& \text { Let } A=\int e^{a t} \sin (b t) d t=\int u d v=u v-\int v d u
\end{aligned}
$$

Then let

$$
\begin{align*}
& {\left[\begin{array}{l}
u=e^{a t} \\
d u=a e^{a t} d t
\end{array}\right] \text { and }\left[\begin{array}{l}
d v=(\sin b t) d t \\
v=\int d v=\int \sin (b t) d t \\
v=\frac{-1}{b} \cos b t
\end{array}\right]} \\
& \begin{aligned}
\int e^{a t} \sin (b t) d t & =u v-\int v d u \\
& =-\frac{e^{a t}}{b} \cos b t+\frac{a}{b} \int e^{a t} \cos (b t) d t
\end{aligned} \tag{16}
\end{align*}
$$

Thus,

$$
\begin{aligned}
& \int e^{a t} \cos (b t) d t= \\
& \quad=\frac{e^{a t}}{b} \sin b t-\frac{a}{b}\left[\frac{-e^{a t}}{b} \cos b t+\frac{a}{b} \int e^{a t} \cos (b t) d t\right]
\end{aligned}
$$

$$
\begin{aligned}
& \int e^{a t} \cos b t d t= \\
& =\frac{e^{a t}}{b} \sin b t+\frac{a}{b^{2}} e^{a t} \cos b t-\frac{a^{2}}{b^{2}} \int e^{a t} \cos b t d t \\
& \int \begin{array}{c}
\int e^{a t} \cos b t d t+\frac{a^{2}}{b^{2}} \int e^{a t} \cos b t d t= \\
\\
\int e^{a t} \cos b t d t\left(1+\frac{e^{a t}}{b} \sin b t+\frac{a^{2}}{b^{2}}\right)= \\
\int e^{a t} \cos b t d t\left(\frac{b^{2}+a^{a t}}{b^{2}}\right)=\frac{e^{a t}}{b} \sin b t+\frac{a}{b^{2}} e^{a t} \cos b t
\end{array} \\
& \int e^{a t} \cos b t d t=e^{a t}\left[\frac{b \sin b t+a \cos b t}{b^{2}}\right]
\end{aligned}
$$

(B)

Here's how to solve the last one.

$$
\begin{array}{r}
\int e^{a t} \sin (b t) d t=-\frac{e^{a t}}{b} \cos b t+\frac{a}{b} \int e^{a t} \cos (b t) d t \\
\quad=-\frac{e^{a t}}{b} \cos b t+\frac{a}{b} e^{a t}\left[\frac{a \cos b t+b \sin b t}{a^{2}+b^{2}}\right]
\end{array}
$$

Ch 6-Sec 4-Pro 7P

Page 1 / 2
Let w be a nonzero $\mathbb{R e a l}$ constant. Solve

$$
\begin{equation*}
(D+i \omega)(D-i \omega) z=e^{i \omega t} \tag{1}
\end{equation*}
$$

and thus show that the equations below have the indicated solutions:

$$
\begin{align*}
x^{\prime \prime}+w^{2} x & =\cos w t \tag{2}\\
x & =\frac{t \sin w t}{2 w} \tag{2a}\\
y^{\prime \prime}+w^{2} y & =\sin w t \tag{3}\\
y & =-\frac{t \cos w t}{2 w} \tag{3a}
\end{align*}
$$

Solution:

Since

$$
\cos w t=\operatorname{Re} e^{i w t} \quad \cup \quad \sin w t=\operatorname{Im} e^{i w t}
$$

let's use instead

$$
\begin{align*}
& z^{\prime \prime}+w^{2} z=e^{i w t} \tag{6}\\
& \text { where }\left[\begin{array}{l}
\operatorname{Re} z=x(t) \\
\operatorname{Im} z=y(t)
\end{array} \quad \operatorname{eqn}(2 a)\right.
\end{align*}
$$

Note:

$$
(D+i w)(D-i w) z=e^{i w t}
$$

is the same as equation(6). See

$$
\begin{equation*}
(D+\dot{w} w)(D-\dot{w} w) z=e^{i w t} \tag{10}
\end{equation*}
$$

$$
e^{i w t}=(D+i w)(D-i w) z=\left(D^{2}-i^{2} w^{2}\right) z
$$

$$
e^{i w t}=\left(D^{2}+w^{2}\right) z=z^{\prime \prime}+w^{2} z \equiv \operatorname{eqn}(6)
$$

$$
\left[\begin{array}{l}
\operatorname{Re} z=x(t) \\
\operatorname{Im} z=y(t)
\end{array}\right]
$$

Let

$$
(D+i w)(D-i w) z=e^{i w t} \quad \text { and } \quad z=u e^{i w t}
$$

Therefore,

$$
\begin{aligned}
& e^{i w t}=(D+i w)(D-i w) z \\
&=(D+i w)(D-i w) u e^{i w t} \\
&=e^{i w t}((D+i w)+i w)((D+i w)-i w) u \\
& 1=(D+2 i w) D u \\
& \text { Let } \quad v=D u
\end{aligned}
$$

$$
\therefore
$$

$$
1=(D+2 i w) D u=(D+2 i w) v=D v+2 i w v
$$

$$
v=\boldsymbol{a} \text { constant } \quad \text { (See chapter 6.2.129) }
$$

So, $D v+2 i w v=0+2 i w v=1$

$$
\begin{aligned}
& v=\frac{1}{2 \dot{d} v}=D u=u^{\prime}=\frac{d u}{d t} \\
& \quad d u=\frac{d t}{2 \dot{d} v}
\end{aligned}
$$

$$
\int d u=\int \frac{d t}{2 i w}
$$

$$
u=\frac{t}{2 i w}
$$

$$
z=u e^{i w t}=\frac{t}{2 i w} e^{i w t}=\frac{t}{2 i w}[\cos w t+i \sin w t]
$$

$$
=\frac{t}{2 i w}\left(\frac{i}{i}\right)[\cos w t+i \sin w t]=\frac{-i t}{2 w}[\cos w t+i \sin w t]
$$

$$
z=\frac{t}{2 w}\left[-i \cos w t-i^{2} \sin w t\right]=\frac{t}{2 w}[\sin w t-i \cos w t]
$$

Here are solutions to equations $\{2,3\}$.

$$
\begin{aligned}
& \operatorname{Re} z=x(t)=\frac{t \sin w t}{2 w} \\
& \operatorname{Im} z=y(t)=-\frac{t \cos w t}{2 w}
\end{aligned}
$$

Chapter 6 Section 5

Existence and Uniqueness

Sometimes when we are attempting to solve problems it is always helpful if not encouraging to now if there is a solution. And still better, knowing whether the solution is unique or just one of many. This section deals with uniqueness theorems. As stated by "Grossman", Differential Equations, 1991, chap 4.2, page 80:
(1) An existence theorem asserts that a problem has at least one solution,
(2) a uniqueness theorem asserts that a problem has at most one solution.
And in addition that, "...There is nothing wrong with looking for a solution before you know it exists, and if you find it the question of existence is settled then and there."

At the stage you should already know the importance of complex numbers in physics and engineering. The primary theorem of this section is:

Theorem 6.5.1 - Let f be a continuous \mathbb{R} eal or complex-valued function or an open interval I containing the point t_{o}. Then the following initial value problem has one, and only one, solution:

$$
T y=f \text { on } I, \quad y\left(t_{o}\right)=y_{o} \quad, \quad y^{\prime}\left(t_{o}\right)=y_{1} .
$$

So, let's begin!

Ch 6 - Sec 5 - Pro 1
 Parts a, i
 Page 1 / 10

Write two linearly independent \mathbb{R} eal solutions to the 9 differential equations given below:
(A)

Given: $y^{\prime \prime}+3 y^{\prime}=54 y$.
Solution:

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}=54 y \\
& 0=y^{\prime \prime}+3 y^{\prime}-54 y \\
& \quad=\left(D^{2}+3 D-54\right) y \\
& \text { Let } y=e^{\lambda_{t}}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}+3 D-54\right) y=\left(D^{2}+3 D-54\right) e^{\lambda_{t} t} \\
& \text { Use the " slide - rule } \\
& 0=e^{\lambda_{t}}\left(\lambda^{2}+3 \lambda-54\right) \\
& 0=\left(\lambda^{2}+3 \lambda-54\right) \quad \text { Characteristic eqn } \\
& 0=(\lambda+9)(\lambda-6) \quad \text { @ } \lambda \in\{-9,6\} \\
& \therefore \\
& \quad y_{1}=e^{\lambda_{1} t} \quad ; \quad y_{2}=e^{\lambda_{2} t}
\end{aligned}
$$

Or as a solution vector:

$$
y=\bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{-9 t}}{e^{6 t}}=\left(y_{1}, y_{2}\right)=\left(e^{-9 t}, e^{6 t}\right)
$$

(B)

$$
\begin{equation*}
\text { Given: } \quad y^{\prime \prime}+y=2 y^{\prime} . \tag{20}
\end{equation*}
$$

Solution:

$$
\begin{aligned}
& y^{\prime \prime}+y=2 y^{\prime} \\
& 0=y^{\prime \prime}-2 y^{\prime}+y \\
& \quad=\left(D^{2}-2 D+1\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}-2 D+1\right) y=\left(D^{2}-2 D+1\right) e^{\lambda_{t}} \\
& \text { Use the " slide - rule } \\
& 0=e^{\lambda t}\left(\lambda^{2}-2 \lambda+1\right) \\
& 0=\left(\lambda^{2}-2 \lambda+1\right) \quad \text { Characteristic eqn. } \\
& 0=(\lambda-1)(\lambda-1) \quad \lambda \in\{1,1\} \\
& \therefore \\
& \therefore y_{1}=e^{\lambda_{1} t}=e^{t} \quad \cup y_{2}=e^{\lambda_{2} t}=t e^{\lambda_{1} t}=t e^{t}
\end{aligned}
$$

Note that $\lambda=1$ is a double root.
Or as a solution vector:

$$
\begin{aligned}
& \vec{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{t}}{t e^{t}}=e^{t}\binom{1}{t} \\
& y=\left(y_{1}, y_{2}\right)=\left(e^{t}, t e^{t}\right)
\end{aligned}
$$

