(C)

$$
\begin{equation*}
\text { Given: } \quad y^{\prime \prime}+5 y=4 y^{\prime} . \tag{30}
\end{equation*}
$$

Solution:

$$
\begin{align*}
& y^{\prime \prime}+5 y=4 y^{\prime} \\
& 0=y^{\prime \prime}-4 y^{\prime}+5 y \\
& \quad=\left(D^{2}-4 D+5\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}-4 D+5\right) y=\left(D^{2}-4 D+5\right) e^{\lambda t} \\
& \text { Use the " slide - rule } \\
& 0=e^{\lambda t}\left(\lambda^{2}-4 \lambda+5\right) \\
& 0=\left(\lambda^{2}-4 \lambda+5\right) \quad \text { Characteristic eqn. } \tag{38}\\
& 0=(\lambda ? 5)(\lambda ? 1)
\end{align*}
$$

Method 1:

$$
\begin{aligned}
& a^{2}-4 b=16-4(5)=-4>0 \\
& y=e^{a t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \\
& \alpha=\frac{a}{2} ; \quad \beta=\frac{\sqrt{4 b^{2}-a^{2}}}{2} \\
& \alpha=\frac{4}{2}=2 \quad ; \quad \beta=\frac{\sqrt{4}}{2}=\frac{2}{2}=1 \\
& \therefore \\
& y=e^{a t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right)=e^{2 t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right) \\
& y=\left[c_{1} y_{1}+c_{2} y_{2}\right] \\
& y_{1}=e^{2 t} \cos t \quad \text { and } \quad y_{2}=e^{2 t} \sin t
\end{aligned}
$$

Or as a solution vector:

$$
\begin{aligned}
& \bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
e^{2 t} & \cos t \\
e^{2 t} & \sin t
\end{array}\right)=e^{2 t}\binom{\cos t}{\sin t} \\
& y=\left(y_{1}, y_{2}\right)=\left(e^{2 t} \cos t, e^{2 t} \sin t\right)
\end{aligned}
$$

Method 2: From equation (38)

$$
\begin{aligned}
& \lambda^{2}-4 \lambda+5=0 \\
& \lambda=\frac{4 \pm \sqrt{16-4(5)}}{2}=2 \pm i
\end{aligned}
$$

Since Euler yields

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \\
& e^{(2 \pm i) t}=e^{2 t} e^{ \pm i t}=e^{2 t}(\cos t \pm i \sin t)
\end{aligned}
$$

we get \mathbb{R} eal solutions

$$
\left[\begin{array}{l}
y_{1}=e^{2 t} \cos t \\
y_{2}=e^{2 t} \sin t
\end{array}\right]
$$

(D)

$$
\begin{equation*}
\text { Given: } \quad y^{\prime \prime}+6 y=5 y^{\prime} . \tag{60}
\end{equation*}
$$

Solution:

$$
\begin{aligned}
& y^{\prime \prime}+6 y=5 y^{\prime} \\
& 0=y^{\prime \prime}-5 y^{\prime}+6 y \\
& \quad=\left(D^{2}-5 D+6\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}-5 D+6\right) y=\left(D^{2}-5 D+6\right) e^{\lambda t} \\
& \text { Use the "slide }- \text { rule" }
\end{aligned}
$$

$0=e^{\lambda t}\left(\lambda^{2}-5 \lambda+6\right)$
$0=\left(\lambda^{2}-5 \lambda+\sigma_{b}^{6}\right)$ Characteristic eq.
$0=(\lambda-2)(\lambda-3) \quad @ \lambda \in\{2,3\} \equiv\left\{\lambda_{1} \lambda_{2}\right\}$
$\therefore \quad\left[\begin{array}{l}y_{1}=e^{\lambda_{1} t}=e^{2 t} \\ y_{2}=e^{\lambda_{2} t}=e^{3 t}\end{array}\right]$
$y=\bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{2 t}}{e^{3 t}}=\left(e^{2 t}, e^{3 t}\right)=\left(y_{1}, y_{2}\right)$
(E)

Given: $\quad y^{\prime \prime}+4 y=4 y^{\prime}$.
Solution:

$$
\begin{align*}
& y^{\prime \prime}+4 y=4 y^{\prime} \\
& 0=y^{\prime \prime}-4 y^{\prime}+4 y \\
& =\left(D^{2}-4 D+4\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}-4 D+4\right) y=\left(D^{2}-4 D+4\right) e^{\lambda t} \\
& \text { Use the "slide - rule" } \\
& 0=e^{\lambda t}\left(\lambda^{2}-4 \lambda+4\right) \\
& 0=\left(\lambda^{2}-4 \lambda+4\right) \quad \text { Characteristic eq. } \tag{78}\\
& 0=(\lambda-2)(\lambda-2) @ \lambda \in\{2,2\} \\
& \text { Double root } \\
& \therefore \quad y_{1}=e^{\lambda_{1} t} \cup y_{2}=e^{\lambda_{2} t}=t e^{\lambda_{1} t}
\end{align*}
$$

Or as a solution vector:

$$
\begin{aligned}
& \bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{2 t}}{t e^{2 t}}=e^{2 t}\binom{1}{t} \\
& y=\left(y_{1}, y_{2}\right)=\left(e^{2 t}, t e^{2 t}\right)=e^{2 t}(1, t)
\end{aligned}
$$

(F)

Given: $y^{\prime \prime}+50 y=2 y^{\prime}$.

Solution:

$$
\begin{align*}
& y^{\prime \prime}+5 y=4 y^{\prime} \\
& 0=y^{\prime \prime}-4 y^{\prime}+5 y \\
& \quad=\left(D^{2}-4 D+5\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}-4 D+5\right) y=\left(D^{2}-4 D+5\right) e^{\lambda t} \\
& \text { Use the " slide }- \text { rule }^{\prime \prime} \\
& 0=e^{\lambda t}\left(\lambda^{2}-4 \lambda+5\right) \\
& 0=\left(\lambda^{2}-4 \lambda+5\right) \quad \text { Characteristic eqn. } \tag{98}
\end{align*}
$$

Since $a^{2}-4 b=4-200=-196<0$ there are 2 complex solutions. The solutions can be resolved from method 1:

$$
\begin{align*}
& y=e^{a t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \tag{100}\\
& \text { where } \quad \alpha=-\frac{a}{2}=1 \\
& \qquad \beta=\frac{\sqrt{4 b-a^{2}}}{2}=\frac{\sqrt{196}}{2}=7
\end{align*}
$$

\therefore eqn (100) becomes

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2}=e^{t}\left(c_{1} \cos 7 t+c_{2} \sin 7 t\right) \\
& {\left[\begin{array}{l}
y_{1}=e^{t} \cos 7 t \\
y_{2}=e^{t} \sin 7 t
\end{array}\right]} \\
& \text { Or } \quad \bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{t} \cos 7 t}{e^{t} \sin 7 t}=e^{t}\binom{\cos 7 t}{\sin 7 t}
\end{aligned}
$$

Method 2: From eqn (98)

$$
\begin{aligned}
& \lambda^{2}-2 \lambda+50=0 \\
& \lambda=\frac{2 \pm \sqrt{-196}}{2}=\frac{2 \pm 14 i}{2}=1 \pm 7 i
\end{aligned}
$$

The Euler eqn yields
$e^{i \theta}=\cos \theta+i \sin \theta$
$e^{(1 \pm 7 i) t}=e^{t} e^{ \pm 7 i t}=e^{t}(\cos 7 t \pm i \sin 7 t)$
Which yields $\operatorname{Re}($ Solutions $)$
$y_{1}=e^{t} \cos 7 t \quad \cup \quad y_{2}=e^{t} \sin 7 t$

Done
(G)

$$
\begin{equation*}
\text { Given: } y^{\prime \prime}+6 y^{\prime}+10 y=0 . \tag{110}
\end{equation*}
$$

Solution:

$$
\begin{align*}
& y^{\prime \prime}+6 y^{\prime}+10 y=0 \\
& 0=y^{\prime \prime}+6 y^{\prime}+10 y \\
& \quad=\left(D^{2}+6 D+10\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}+6 D+10\right) y=\left(D^{2}+6 D+10\right) e^{\lambda t} \\
& \text { Use the " slide - rule" } \\
& 0=e^{\lambda t}\left(\lambda^{2}+6 \lambda+10\right) \\
& 0=\left(\lambda^{2}+\underset{a}{6} \lambda+\underset{b}{10}\right) \quad \text { Characteristic eqn. } \tag{118}
\end{align*}
$$

Since $a^{2}-4 b=36-40=-4<0$ there are 2 complex solutions. The solutions can be resolved from

method 1:

$$
\begin{align*}
& y=e^{a t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \tag{120}\\
& \text { where } \quad \alpha=-\frac{a}{2}=-3 \\
& \qquad \beta=\frac{\sqrt{4 b-a^{2}}}{2}=\frac{2}{2}=1
\end{align*}
$$

\therefore eqn (120) becomes

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2}=e^{-3 t}\left(c_{1} \cos t+c_{2} \sin t\right) \\
& {\left[y_{1}=e^{-3 t} \cos t \quad y_{2}=e^{-3 t} \sin t\right]}
\end{aligned}
$$

$$
\text { Or } \quad \bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
e^{-3 t} & \cos t \\
e^{-3 t} & \sin t
\end{array}\right)=e^{-3 t}\binom{\cos t}{\sin t}
$$

Method 2: From eqn(118)

$$
\begin{aligned}
& \lambda^{2}+6 \lambda+10=0 \\
& \lambda=\frac{-6 \pm \sqrt{36-40}}{2}=\frac{-6 \pm 2 i}{2}=-3 \pm i
\end{aligned}
$$

The Euler eqn yields
$e^{i \theta}=\cos \theta+i \sin \theta$
$e^{(-3 \pm i) t}=e^{-3 t} e^{ \pm i t}=e^{-3 t}(\cos t \pm i \sin t)$
Which yields $\operatorname{Re}($ Solutions $)$
$y_{1}=e^{-3 t} \cos t \quad y_{2}=e^{-3 t} \sin t$
(H)

$$
\begin{equation*}
\text { Given: } \quad y^{\prime \prime}+10 y^{\prime}+29 y=0 . \tag{130}
\end{equation*}
$$

Solution:

$$
\begin{align*}
& y^{\prime \prime}+10 y^{\prime}+29 y=0 \\
& 0=y^{\prime \prime}+10 y^{\prime}+29 y \\
& \quad=\left(D^{2}+10 D+29\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}+10 D+29\right) y=\left(D^{2}+10 D+29\right) e^{\lambda t} \\
& \text { Use the " slide - rule" } \\
& 0=e^{\lambda t}\left(\lambda^{2}+10 \lambda+29\right) \\
& 0=\left(\lambda^{2}+\underset{a}{10} \lambda+\underset{b}{29}\right) \quad \text { Characteristic eqn. } \tag{138}
\end{align*}
$$

Since $a^{2}-4 b=100-116=-16<0$ there are 2 complex solutions. The solutions can be resolved from

method 1:

$$
\begin{align*}
& y=e^{a t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \tag{140}\\
& \text { where } \quad \alpha=-\frac{a}{2}=-\frac{10}{2}=-5 \\
& \qquad \beta=\frac{\sqrt{4 b-a^{2}}}{2}=\frac{4}{2}=2
\end{align*}
$$

\therefore eqn (140) becomes
$y=c_{1} y_{1}+c_{2} y_{2}=e^{-5 t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)$
$\left[y_{1}=e^{-5 t} \cos 2 t \quad y_{2}=e^{-5 t} \sin 2 t\right]$
Or. $\bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{-5 t} \cos 2 t}{e^{-5 t} \sin 2 t}=e^{-5 t}\binom{\cos 2 t}{\sin 2 t}$

Method 2: From eqn(138)

$$
\begin{aligned}
& \lambda^{2}+10 \lambda+29=0 \\
& \lambda=\frac{-10 \pm \sqrt{100-116}}{2}=\frac{-10 \pm \sqrt{-16}}{2} \\
& \lambda=\frac{-10 \pm 4 i}{2}=-5 \pm 2 i
\end{aligned}
$$

The Euler eq yields
$e^{i \theta}=\cos \theta+i \sin \theta$
$e^{(-5 \pm 2 i) t}=e^{-5 t} e^{ \pm 2 i t}=e^{-5 t}(\cos 2 t \pm i \sin 2 t)$
Which yields $\operatorname{Re}($ Solutions $)$

$$
y_{1}=e^{-5 t} \cos 2 t \quad \cup \quad y_{2}=e^{-5 t} \sin 2 t
$$

(C)

$$
\begin{equation*}
\text { Given: } \quad y^{\prime \prime}+12 y^{\prime}+35 y=0 . \tag{160}
\end{equation*}
$$

Solution:

$$
\begin{align*}
& y^{\prime \prime}+12 y^{\prime}+35 y=0 \\
& 0=y^{\prime \prime}+12 y^{\prime}+35 y \\
& \quad=\left(D^{2}+12 D+35\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}+12 D+35\right) y=\left(D^{2}+12 D+35\right) e^{\lambda t} \\
& \text { Use the " slide - rule" } \\
& 0=e^{\lambda t}\left(\lambda^{2}+1 \lambda 2+35\right) \\
& 0=\left(\lambda^{2}+12 \lambda+35\right) \text { Characteristic eqn. } \tag{168}\\
& 0=(\lambda+7)(\lambda+5) \\
& \therefore \\
& \therefore \\
& {\left[\begin{array}{l}
\left.y_{1}=e^{\lambda_{1} t}=e^{-5 t}\right] \\
\left.y_{1}=e^{\lambda_{2} t}=e^{-7 t}\right]
\end{array}\right.}
\end{align*}
$$

Or as a solution vector:

$$
\begin{aligned}
& \bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{-5 t}}{e^{-7 t}} \\
& y=\left(y_{1}, y_{2}\right)=\left(e^{-5 t}, e^{-7 t}\right)
\end{aligned}
$$

Ch 6-Sec 5-Pro 2

Parts a, c
Page $1 / 3$
This problem pertains to the equation

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+a y=0 \tag{180}
\end{equation*}
$$

where a is a \mathbb{R} eal constant. Obtain the following particular solutions:

$$
\begin{equation*}
e^{-t} ; t e^{-2 t} ; \quad e^{-2 t} \cos t \tag{182}
\end{equation*}
$$

for $a=3,4,5$ respectively.
(A)

Solution:

$$
\begin{align*}
& y^{\prime \prime}+4 y^{\prime}+a y=0 \\
& 0=y^{\prime \prime}+4 y^{\prime}+a y \\
& \quad=\left(D^{2}+4 D+a\right) y \\
& \text { Let } y=e^{\lambda t}=e^{s t} \\
& \therefore \\
& 0=\left(D^{2}+4 D+a\right) y=\left(D^{2}+4 D+a\right) e^{\lambda t} \\
& \text { Use the " slide - rule" } \\
& 0=e^{\lambda t}\left(\lambda^{2}+4 \lambda+a\right) \\
& 0=\left(\lambda^{2}+\underset{A}{4 \lambda}+\underset{B}{a}\right) \quad \text { Characteristic eqn. } \tag{188}
\end{align*}
$$

Since $A^{2}-4 B=16-4 a=$? Then for $a=3$
$16-4 a=16-12=4>0$
Yields $\operatorname{Re}($ Solutions $)$.
Thus $\lambda^{2}+4 \lambda+a=\lambda^{2}+4 \lambda+3=0$

$$
\begin{aligned}
& \quad(s+3)(s+1)=0 \quad @ \quad \lambda \in\left\{\lambda_{1} \lambda_{2}\right\} \equiv\{-1,-3\} \\
& {\left[\begin{array}{l}
y_{1}= \\
y_{2}= \\
e^{\lambda_{1} t}=e^{\lambda_{2} t}=e^{-t}
\end{array}\right]}
\end{aligned}
$$

(B)

For $a=4$
$\lambda^{2}+4 \lambda+a=\lambda^{2}+4 \lambda+4=0$

$$
(\lambda+2)(\lambda+2)=0
$$

(a) $\lambda=-2 . \quad \therefore$ Double root @ $\lambda_{1}=\lambda_{2}=-2$

Thus $y_{1}=e^{\lambda_{1} t} \cup y_{2}=e^{\lambda_{2} t}=t e^{\lambda_{1} t}$
So that $\left[\begin{array}{l}y_{1}=e^{-2 t} \\ y_{2}=t e^{-2 t}\end{array}\right]$
(C)

For $a=5$

$$
\begin{align*}
& A^{2}-4 B=? \\
& \lambda^{2}+4 \lambda+a=\lambda^{2}+4_{A} \lambda+5_{B}=0 \tag{208}
\end{align*}
$$

Since $A^{2}-4 B=16-4(5)=-4<0$ there are 2 complex solutions.
The solutions can be resolved from method 1:

$$
\begin{align*}
& y=e^{a t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \tag{210}\\
& \text { where } \quad \alpha=-\frac{a}{2}=-\frac{A}{2}=-\frac{4}{2}=-2 \\
& \qquad \beta=\frac{\sqrt{4 B-A^{2}}}{2}=\frac{2}{2}=1
\end{align*}
$$

\therefore eqn (210) becomes
$y=c_{1} y_{1}+c_{2} y_{2}=e^{-2 t}\left(c_{1} \cos t+c_{2} \sin t\right)$
$\left[y_{1}=e^{-2 t} \cos t \quad y_{2}=e^{-2 t} \sin t\right]$
Or. $\bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{-2 t} \cos t}{e^{-2 t} \sin t}=e^{-2 t}\binom{\cos t}{\sin t}$

Method 2: From eqn(208)

$$
\begin{aligned}
& \lambda^{2}+10 \lambda+29=0 \\
& \lambda=\frac{-10 \pm \sqrt{100-116}}{2}=\frac{-10 \pm \sqrt{-16}}{2} \\
& \lambda=\frac{-10 \pm 4 i}{2}=-5 \pm 2 i
\end{aligned}
$$

The Euler eqn yields
$e^{i \theta}=\cos \theta+i \sin \theta$
$e^{(-5 \pm 2 i) t}=e^{-5 t} e^{ \pm 2 i t}=e^{-5 t}(\cos 2 t \pm i \sin 2 t)$
Which yields $\operatorname{Re}($ Solutions $)$

$$
y_{1}=e^{-5 t} \cos 2 t \quad \cup \quad y_{2}=e^{-5 t} \sin 2 t
$$

Ch 6-Sec 5-Pro 3

This problem pertains to the equation

$$
\begin{equation*}
y^{\prime \prime}+2 b y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

where b is a \mathbb{R} eal constant. For $b^{2}=1,2,3$ respectively, obtain the following particular solutions:

$$
\begin{equation*}
e^{-b t} \cos t \quad ; \quad t e^{-b t} ; \quad e^{-b t} e^{t} \tag{2}
\end{equation*}
$$

(A)

Solution:

$$
\begin{aligned}
& y^{\prime \prime}+2 b y^{\prime}+2 y=0 \\
& 0=y^{\prime \prime}+2 b y^{\prime}+2 y \\
& \quad=\left(D^{2}+2 b D+2\right) y \\
& \text { Let } \quad y=e^{\lambda t}=e^{s t}
\end{aligned}
$$

\therefore

$$
\begin{align*}
& 0=\left(D^{2}+2 b D+2\right) y=\left(D^{2}+2 b D+2\right) e^{\lambda t} \\
& " \text { slide it baby" } \\
& 0=e^{\lambda t}\left(\lambda^{2}+2 b \lambda+2\right) \\
& 0=\left(\lambda^{2}+\underset{A}{2 b \lambda+\underset{B}{2}) \text { Characteristic eqn. }}\right. \tag{8}\\
& \text { If } A^{2}-4 B \text { Then for } b=1 \\
& A^{2}-4 B=4 b^{2}-8=4-8=-4<0
\end{align*}
$$

Since $A^{2}-4 B=-4<0$ there are 2 complex solutions. The solutions can be resolved from
method 1:

$$
\begin{aligned}
& y=e^{a t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \\
& \text { where } \quad \alpha=-\frac{A}{2}=-\frac{2 b}{2}=-b \\
& \qquad \beta=\frac{\sqrt{4 B-A^{2}}}{2}=\frac{\sqrt{8-4 b^{2}}}{2}=\frac{2}{2}=1 \\
& \therefore \text { eqn }(10) \text { becomes } \\
& y=c_{1} y_{1}+c_{2} y_{2}=e^{-b t}\left(c_{1} \cos t+c_{2} \sin t\right) \\
& {\left[y_{1}=e^{-b t} \cos t \quad \cup \quad y_{2}=e^{-b t} \sin t\right]} \\
& \text { Or } \quad \bar{\varphi}(t)=\binom{y_{1}}{y_{2}}=\binom{e^{-b t} \cos t}{e^{-b t} \sin t}=e^{-b t}\binom{\cos t}{\sin t} \\
& \boldsymbol{b}=\boldsymbol{1}
\end{aligned}
$$

Method 2: From eqn(8)

$$
\begin{aligned}
& \lambda^{2}+2 b \lambda+2=0 \\
& \lambda=\frac{-2 b \pm \sqrt{2^{2} b^{2}-8}}{2}=\frac{-2 b \pm \sqrt{-4}}{2} \\
& \lambda=-b \pm i
\end{aligned}
$$

The Euler eq yields
$e^{i \theta}=\cos \theta+i \sin \theta$
$e^{(-b \pm i) t}=e^{-b t} e^{ \pm i t}=e^{-b t}(\cos t \pm i \sin t)$
Which yields $\operatorname{Re}($ Solutions $)$

$$
y_{1}=e^{-b t} \cos t \quad \cup \quad y_{2}=e^{-b t} \sin t
$$

(B)

For

$$
\begin{aligned}
& b^{2}=2 \quad \text { and } \quad \lambda^{2}+2 b \lambda+\underset{A}{2}=0 \\
& A^{2}-4 B=4 b^{2}-8=8-8=0
\end{aligned}
$$

There is a double root for $y=e^{\lambda t}$.
Therefore,

$$
\left.\begin{array}{c}
\lambda^{2}+2 b \lambda+2=\lambda^{2}+2 \sqrt{2} \lambda+2=0 \\
=(\lambda+\sqrt{2})(\lambda+\sqrt{2})=0 \\
@ \lambda \in\left\{\lambda_{1} \lambda_{2}\right\} \equiv\{-\sqrt{2},-\sqrt{2}\} \\
\lambda=-b
\end{array}\right] \begin{gathered}
\left.\lambda=t e^{-b t}\right] \\
{\left[\begin{array}{l}
y_{1}=e^{\lambda_{1} t}=e^{-b t} \\
y_{2}=e^{\lambda_{2} t}=t e^{\lambda_{1} t}=t
\end{array}\right.}
\end{gathered}
$$

(C)

For

$$
\begin{aligned}
& b^{2}=3 \text { and } \lambda^{2}+2 b \lambda+\underset{A}{2}=0 \\
& A^{2}-4 B=4 b^{2}-8=4(3)-8=4>0
\end{aligned}
$$

There are $2 \mathbb{R}$ eal roots for $y=e^{\lambda t}$.
Therefore,

$$
\begin{aligned}
& \lambda^{2}+2 \sqrt{3} \lambda+2=0 \\
& \lambda=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 b \pm \sqrt{4 b^{2}-4(2)}}{2} \\
& \lambda=\frac{-2 b \pm \sqrt{12-8}}{2}=\frac{-2 b \pm 2}{2}=-b \pm 1 \\
& \therefore \\
& y=e^{\lambda t}=e^{(-b \pm 1) t}=e^{-b t} e^{ \pm t} \\
& {\left[\begin{array}{l}
y_{1}=e^{-b t} e^{t} \\
y_{2}=e^{-b t} e^{-t}
\end{array}\right]}
\end{aligned}
$$

$$
\text { Ch 6-Sec 5-Pro } 4
$$

Page 1 / 4
Get a particular solution of equations $\{1,2,3\}$ in the simplest possible form and thus get a solution of the $4^{\text {th }}$ equation where a, b, c are any constants:

$$
\begin{align*}
& y^{\prime \prime}-y^{\prime}+7 y=\cos 2 t \tag{1}\\
& y^{\prime \prime}-y^{\prime}+7 y=\sin 2 t \tag{2}\\
& y^{\prime \prime}-y^{\prime}+7 y=e^{2 t} \tag{3}\\
& y^{\prime \prime}-y^{\prime}+7 y=13(a \cos 2 t+b \sin 2 t)+9 c e^{2 t} \tag{4}
\end{align*}
$$

Solution:

Equations (1) and (2) can be represented by

$$
\left.\begin{array}{l}
z^{\prime \prime}-z^{\prime}+7 z=e^{2 i t} \\
\text { Let }\left[\begin{array}{l}
z=A e^{2 i t} \\
z^{\prime} \\
z^{\prime \prime}=2 i A e^{2 i t} \\
\end{array}\right]=-4 A e^{2 i t}
\end{array}\right] .
$$

So $y^{\prime \prime} \rightarrow z^{\prime \prime}$ here.
$e^{2 i t}=z^{\prime \prime}-z^{\prime}+7 z$
$=-4 A e^{2 i t}-2 i A e^{2 i t}+7 A e^{2 i t}$
$1=-4 A-2 i A+7 A=A(-4-2 i+7)=A(3-2 i)$
$A=\frac{1}{3-2 i} \cdot\left(\frac{3+2 i}{3+2 i}\right)=\frac{3+2 i}{9+6 i-6 i+4}$
$A=\frac{3+2 i}{13}$
\therefore
$z=A e^{2 i t}=\frac{(3+2 i)}{13} e^{2 i t}=\frac{(3+2 i)}{13}[\cos 2 t+i \sin 2 t]$
$=\frac{1}{13}[3 \cos 2 t+3 i \sin 2 t+2 i \cos 2 t-2 \sin 2 t]$
$z=\frac{1}{13}[3 \cos 2 t-2 \sin 2 t+i(2 \cos 2 t+3 \sin 2 t)]$
So, $\left[\begin{array}{l}y_{1}=\frac{1}{13}[3 \cos 2 t-2 \sin 2 t] \\ y_{2}=\frac{1}{13}[2 \cos 2 t+3 \sin 2 t]\end{array}\right]$
Solve equation (3) as follows:

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}+7 y=e^{2 t} \\
& \text { Let } \quad y=A e^{\lambda t}=A e^{2 t}
\end{aligned}
$$

Where $2 \neq$ root of the homogeneous equation.

$$
\begin{aligned}
& \text { Thus }\left[\begin{array}{l}
y=A e^{2 t} \\
y^{\prime}=2 A e^{2 t} \\
y^{\prime \prime}=4 A e^{2 t}
\end{array}\right] \\
& \begin{aligned}
& \therefore \\
& e^{2 t}=y^{\prime \prime}-y^{\prime}+7 y \\
&=4 A e^{2 t}-2 A e^{2 t}+7 A e^{2 t} \\
& 1=4 A-2 A+7 A=9 A \\
& A=\frac{1}{9} \\
& \text { Then }\left[y_{3}=A e^{2 t}=\frac{1}{9} e^{2 t}\right]
\end{aligned}
\end{aligned}
$$

Now for the $4^{\text {th }}$ equation do as follows:
Let

$$
T y=y^{\prime \prime}-y^{\prime}+7 y=13(a \cos 2 t+b \sin 2 t)+9 c e^{2 t}
$$

By the principle of superposition,

$$
\begin{aligned}
& T y_{11}=y^{\prime \prime}-y^{\prime}+7 y=13 a \cos 2 t \\
& T y_{22}=y^{\prime \prime}-y^{\prime}+7 y=13 b \sin 2 t \\
& T y_{33}=y^{\prime \prime}-y^{\prime}+7 y=9 c e^{2 t}
\end{aligned}
$$

Since equations $\{1,2,3\}$ are

$$
\begin{aligned}
& T y_{1}=y^{\prime \prime}-y^{\prime}+7 y=\cos 2 t \\
& T y_{2}=y^{\prime \prime}-y^{\prime}+7 y=\sin 2 t \\
& T y_{1}=y^{\prime \prime}-y^{\prime}+7 y=e^{2 t}
\end{aligned}
$$

Then

$$
T y_{11}=13 a \cos 2 t=13 a T y_{1}
$$

$$
\begin{aligned}
& y_{11}=13 a y_{1}=13 a\left(\frac{1}{13}[3 \cos 2 t-2 \sin 2 t]\right) \\
& {\left[y_{11}=a(3 \cos 2 t-2 \sin 2 t \quad \text { Solution } 1]\right.} \\
& T y_{22}=13 b \sin 2 t=13 b\left(T y_{2}\right) \\
& y_{22}=13 b y_{2}=13 b\left[\frac{1}{13}(2 \cos 2 t+3 \sin 2 t)\right] \\
& {\left[y_{22}=b(2 \cos 2 t+3 \sin 2 t) \quad\right] 2^{\text {nd }} \quad \text { Solution }} \\
& T y_{33}=9 c e^{2 t}=9 c T y_{3}=T\left(9 c y_{3}\right) \\
& y_{33}=9 c y_{3}=\left[9 c\left(\frac{1}{9} e^{2 t}\right)=c e^{2 t}\right] 3^{\text {rd }} \text { Solution }
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& y=y_{11}+y_{22}+y_{33} \quad \text { Because } \\
& T y=T y_{11}+T y_{22}+T y_{33} \\
& y=a(3 \cos 2 t-2 \sin 2 t)+b(\cos 2 t+3 \sin 2 t)+c e^{2 t}
\end{aligned}
$$

This is obtained by the principle of superposition.

Ch 6-Sec 5-Pro 5

Page 1 / 3
This time you are to get a particular solution for each of the two equations (1) \& (2):

$$
\begin{align*}
& x^{\prime \prime}+2 x^{\prime}+2 x=2 e^{-t} \cos t \tag{1}\\
& y^{\prime \prime}+2 y^{\prime}+2 y=2 e^{-t} \sin t \tag{2}
\end{align*}
$$

Try either
(1) $t e^{-t}(A \cos t+B \sin t)$ or
(2) $z=u e^{(-1+i) t}$

If we choose (2), then set $z=u e^{(-1+i) t}$ and use the slide-rule with
$k=-1+i$ in the equivalent complex equation:

$$
\begin{equation*}
(D+1+i)(D+1-i) z=2 e^{(-1+i) t} \tag{5}
\end{equation*}
$$

Note:

$$
\begin{aligned}
& \begin{aligned}
(D+1+i) & (D+1-i) z= \\
& =\left(D^{2}+D-i D+D+1-i+i D+i-i^{2}\right) z \\
& =\left(D^{2}+2 D+2\right) z=z^{\prime \prime}+2 z^{\prime}+2 z
\end{aligned} \\
& \therefore \quad z^{\prime \prime}+2 z^{\prime}+2 z=2 e^{(-1+i) t}
\end{aligned}
$$

So, from (5)

$$
\begin{aligned}
2 e^{(-1+i) t} & =(D+1+i)(D+1-i) z \\
& =(D+1+i)(D+1-i) u e^{(-1+i) t} \\
& =e^{(-1+i) t}(D-1+i+1+i)(D-1+i+1-i) u \\
2 & =(D+2 i)(D u)
\end{aligned}
$$

Logic dictates that $\boldsymbol{D u}=\boldsymbol{c}=\boldsymbol{a}$ constant .
$(D+2 i) D u=2$
$(D+2 i) c=D c+2 i c=2$

$$
2 i c=2
$$

Thus, $\quad c=\frac{2}{2 i}=\frac{1}{i}=-i$
$\therefore \quad D u=c=-i$ $\frac{d u}{d t}=i$
$\int d u=\int-i d t$

$$
u=-i t
$$

$z=u e^{(-1+i) t}=i t e^{-t} e^{i t}=-i t e^{-t}(\cos t+i \sin t)$
$z=t e^{-t}[\sin t-i \cos t]$
Re part $\rightarrow\left[x=t e^{-t} \sin t\right] ; \operatorname{Im}$ part $\rightarrow\left[y=-t e^{-t} \cos t\right]$

